4 surprising things we just learned about Jupiter

Bit by bit, Jupiter is revealing its deepest, darkest secrets.

The latest findings are in from the Juno spacecraft. And they unveil the roots of the planet’s storms, what lies beneath the opaque atmosphere and a striking geometric layout of cyclones parked around the gas giant’s north and south poles.

“We’re at the beginning of dissecting Jupiter,” says Juno mission leader Scott Bolton of the Southwest Research Institute in San Antonio. And the picture that’s emerging — still just a sketch — topples many preconceived notions. The results appear in four papers in the March 8 Nature.
Juno has been orbiting Jupiter since July 4, 2016, on a mission to map the planet’s interior (SN: 6/25/16, p. 16). The probe loops around once every 53 days, traveling on an elongated orbit that takes the spacecraft from pole to pole and as close as about 4,000 kilometers above the cloud tops.

As it plows through Jupiter’s gravity field, Juno speeds up and slows down in response to shifting masses inside the planet. By measuring these minute accelerations and decelerations, scientists can calculate subtle variations in Jupiter’s gravity and deduce how its mass is distributed. That lets researchers build up a three-dimensional map of the planet’s internal structure. At the same time, Juno snaps pictures in visible and infrared light. While other probes have extensively photographed much of the planet, Juno is the first to get an intimate look at the north and south poles.

“The whole thing is really intriguing, especially when you compare [Jupiter] to other giant planets,” says Imke de Pater, a planetary scientist at the University of California, Berkeley. “They are all unique, it looks like.”
Check out these four surprising new things we’ve learned that make Jupiter one of a kind:

  1. Rings of cyclones
    Parked at each pole is a cyclone several thousand kilometers wide. That part isn’t surprising. But each of those cyclones is encircled by a polygonal arrangement of similarly sized storms — eight in the north and five in the south. The patterns have persisted throughout Juno’s visit.

“We don’t really understand why that would happen, and why they would collect up there in such a geometric fashion,” Bolton says. “That’s pretty amazing that nature is capable of something like that.”

  1. More than skin deep
    Researchers have long debated whether the photogenic bands of clouds that wrap around Jupiter have deep roots or just skim the top of the atmosphere. Juno’s new look shows that the bands penetrate roughly 3,000 kilometers below the cloud tops. That’s 30 times as thick as the bulk of Earth’s atmosphere. While just a tiny fraction of Jupiter’s diameter, that’s deeper than previously thought, Bolton says.
  2. Weighty weather
    Within those 3,000 kilometers lies what passes for an atmosphere on Jupiter. It’s the stage on which Jupiter’s turbulent weather plays out. The atmosphere alone is about three times as massive as our planet, or 1 percent of Jupiter’s entire mass, researchers estimate.
  3. Stuck together
    Below the atmosphere, Jupiter is fluid. But unlike most fluids, the planet rotates as if it’s a solid mass. Like kids playing crack-the-whip, atoms of hydrogen and helium figuratively link arms and spin around the planet in unison, scientists report. Earlier results from Juno also indicate there’s no solid core lurking beneath this fluid (SN: 6/24/17, p. 14), so anyone dropped into the planet can expect a terribly long fall.

Many of these results are preliminary, and it’s unclear what it all means for how Jupiter operates. But what’s been learned so far, Bolton says, “is quite different than anybody anticipated.”

Some meteorites contain superconducting bits

LOS ANGELES — In the search for new superconductors, scientists are leaving no stone — and no meteorite — unturned. A team of physicists has now found the unusual materials, famous for their ability to conduct electricity without resistance, within two space rocks.

The discovery implies that small amounts of superconducting materials might be relatively common in meteorites, James Wampler of the University of California, San Diego, said March 6 at a meeting of the American Physical Society. While the superconducting materials found weren’t new to science, additional interplanetary interlopers might harbor new, more technologically appealing varieties of superconductors, the researchers suggest.
Superconductors could potentially beget new, energy-saving technologies, but they have one fatal flaw: They require very cold temperatures to function, making them impractical for most uses. So scientists are on the hunt for new types of superconductors that work at room temperature (SN: 12/26/15, p. 25). If found, such a substance could lead to dramatic improvements in power transmission, computing and high-speed magnetically levitated trains, among other things.

Space rocks are a good avenue to explore in the search for new, exotic materials, says Wampler. “Meteorites are formed under these really unique, really extreme conditions,” such as high temperatures and pressures.

What makes the meteorite superconductors special, the researchers say, is that they occurred naturally, instead of being fabricated in a lab, as most known superconductors are. In fact, says physicist Ivan Schuller, also of University of California, San Diego, these are the highest temperature naturally occurring superconductors known — although they still have to be superchilled to about 5 kelvins (–268.15° C) to work. They are also the first known to have formed extraterrestrially.

“At this point, it’s a novelty,” says chemist Robert Cava of Princeton University. Although Cava is skeptical that scrutinizing meteorites will lead to new, useful superconductors, he says, it’s “kinda cool” that superconductors show up in meteorites.
Wampler, Schuller and colleagues bombarded bits of powdered meteorite with microwaves and looked for changes in how those waves were absorbed as the temperature changed. The sensitive technique can pick out minute traces of superconducting material within a sample.

Analysis of powdered scrapings from more than a dozen meteorites showed that two meteorites contained superconducting material. However, the superconductors found within the meteorites were run-of-the-mill varieties, made from alloys of metals including indium, tin and lead, which are already known to superconduct.

“The idea is, try to look for something that is very unusual,” such as a room temperature superconductor, says Schuller, who led the research. So far, that hope hasn’t been realized — but that hasn’t deterred the search for something more exotic. For a previous study, Wampler, Schuller and colleagues scanned 65 tiny micrometeorites, but found no superconductors at all.

Since parts of space are colder than 5 kelvins, some meteorites may even contain materials that were once superconducting in their chilly natural habitat. That’s an interesting idea, Wampler says, although it’s too early to say whether that possibility might have any astronomical implications for how the objects behave out in space.

50 years ago, pulsars burst onto the scene

The search for neutron stars has intensified because of a relatively small area, low in the northern midnight sky, from which the strangest radio signals yet received on Earth are being detected. If the signals come from a star, the source broadcasting the radio waves is very likely the first neutron star ever detected. — Science News, March 16, 1968

Update
That first known neutron star’s odd pulsating signature earned it the name “pulsar.” The finding garnered a Nobel Prize just six years after its 1968 announcement — although one of the pulsar’s discoverers, astrophysicist Jocelyn Bell Burnell, was famously excluded. Since then, astronomers have found thousands of these blinking collapsed stars, which have confirmed Einstein’s theory of gravity and have been proposed as a kind of GPS for spacecraft (SN: 2/3/18, p. 7).

The debate over how long our brains keep making new nerve cells heats up

Adult mice and other rodents sprout new nerve cells in memory-related parts of their brains. People, not so much. That’s the surprising conclusion of a series of experiments on human brains of various ages first described at a meeting in November (SN: 12/9/17, p. 10). A more complete description of the finding, published online March 7 in Nature, gives heft to the controversial result, as well as ammo to researchers looking for reasons to be skeptical of the findings.

In contrast to earlier prominent studies, Shawn Sorrells of the University of California, San Francisco and his colleagues failed to find newborn nerve cells in the memory-related hippocampi of adult brains. The team looked for these cells in nonliving brain samples in two ways: molecular markers that tag dividing cells and young nerve cells, and telltale shapes of newborn cells. Using these metrics, the researchers saw signs of newborn nerve cells in fetal brains and brains from the first year of life, but they became rarer in older children. And the brains of adults had none.

There is no surefire way to spot new nerve cells, particularly in live brains; each way comes with caveats. “These findings are certain to stir up controversy,” neuroscientist Jason Snyder of the University of British Columbia writes in an accompanying commentary in the same issue of Nature.

Venus may be home to a new kind of tectonics

THE WOODLANDS, Texas — Venus’ crust is broken up into chunks that shuffle, jostle and rotate on a global scale, researchers reported in two talks March 20 at the Lunar and Planetary Science Conference.

New maps of the rocky planet’s surface, based on images taken in the 1990s by NASA’s Magellan spacecraft, show that Venus’ low-lying plains are surrounded by a complex network of ridges and faults. Similar features on Earth correspond to tectonic plates crunching together, sometimes creating mountain ranges, or pulling apart. Even more intriguing, the edges of the Venusian plains show signs of rubbing against each other, also suggesting these blocks of crust have moved, the researchers say.
“This is a new way of looking at the surface of Venus,” says planetary geologist Paul Byrne of North Carolina State University in Raleigh.

Geologists generally thought rocky planets could have only two forms of crust: a stagnant lid as on the moon or Mars — where the whole crust is one continuous piece — or a planet with plate tectonics as on Earth, where the surface is split into giant moving blocks that sink beneath or collide with each other. Venus was thought to have one solid lid (SN: 12/3/11, p. 26).

Instead, those options may be two ends of a spectrum. “Venus may be somewhere in between,” Byrne said. “It’s not plate tectonics, but it ain’t not plate tectonics.”

While Earth’s plates move independently like icebergs, Venus’ blocks jangle together like chaotic sea ice, said planetary scientist Richard Ghail of Imperial College London in a supporting talk.
Ghail showed similar ridges and faults around two specific regions on Venus that resemble continental interiors on Earth, such as the Tarim and Sichuan basins in China. He named the two Venusian plains the Nuwa Campus and Lada Campus. (The Latin word campus translates as a field or plain, especially one bound by a fence, so he thought it was fitting.)
Crustal motion may be possible on Venus because the surface is scorching hot (SN: 3/3/18, p. 14). “Those rocks already have to be kind of gooey” from the high temperatures, Byrne said. That means it wouldn’t take a lot of force to move them. Venus’ interior is also probably still hot, like Earth’s, so convection in the mantle could help push the blocks around.

“It’s a bit of a paradigm shift,” says planetary scientist Lori Glaze of NASA’s Goddard Space Flight Center, who was not involved in the new work. “People have always wanted Venus to be active. We believe it to be active, but being able to identify these features gives us more of a sense that it is.”

The work may have implications for astronomers trying to figure out which Earth-sized planets in other solar systems are habitable (SN: 4/30/16, p. 36). Venus is almost the same size and mass as the Earth. But no known life exists on Venus, where the average surface temperature is 462° Celsius and the atmosphere is acidic. Scientists have long speculated that the planet’s apparent lack of plate tectonics might play a role in making the planet so seemingly uninhabitable.

What’s more, the work also underlines the possibility that planets go through phases of plate tectonics (SN: 6/25/16, p. 8). Venus could have had plate tectonics like Earth 1 billion or 2 billion years ago, according to a simulation presented at the meeting by geophysicist Matthew Weller of the University of Texas at Austin.

“As Venus goes, does that predict where the Earth is going in the relatively near future?” he wondered.