Anthony Davis injury update: Will head injury keep Lakers star out of Game 6 vs. Warriors?

Closing out a series in the NBA Playoffs is never easy, but the task may have gotten more difficult for the Lakers.

In the fourth quarter of a potential closeout game against the Warriors, Anthony Davis was forced to exit the game after taking an inadvertent shot to the head from Warriors center Kevon Looney.

What does this mean for Davis and the Lakers? Here is what we know about his injury and status moving forward.
Anthony Davis injury update
While battling for position on the inside, Davis took an inadvertent elbow from Looney to the side of his head. Davis was taken out of the game, brought back for evaluation, and eventually ruled out for Game 5 with what the Lakers ruled as a head injury.

Here's the play where Davis was injured as well as the aftermath that includes him receiving attention on the bench before being taken to the locker room.
Turner Sports' Chris Haynes reported that Davis was being evaluated at Chase Center, with the possibility of a concussion looming as a potential diagnosis. Haynes added that Davis was brought to the locker room in a wheelchair following his evaluation.

In a later report, Haynes added that Davis "appears to have avoided a concussion and is doing better now," a positive sign for Davis and the Lakers.

Lakers head coach Darvin Ham told reporters that he spoke with Davis, who he said "seems to be doing really good already."
Davis exited Game 5 with 21 points (on 10-of-18 shooting), nine rebounds and three assists in 32 minutes.

Will Anthony Davis play in Game 6?
Davis' availability largely depends on the diagnosis of his injury and whether or not he is dealing with a concussion. If Davis is not diagnosed with a concussion, there is a clear path for him to return to the floor for Game 6.

Here is an excerpt from the NBA's Concussion Policy:
There is just a one-day layoff between Games 5 and 6 of the Western Conference Semifinals series between the Lakers and Warriors.

Lakers vs. Warriors schedule
Here is the schedule for the second-round series between Los Angeles and Golden State, with the final two games airing on the ESPN family of networks.

Fans in the U.S. can watch the NBA Playoffs on Sling TV, which is now offering HALF OFF your first month! Stream Sling Orange for $20 in your first month to catch all the games on TNT, ESPN & ABC. For games on NBA TV, subscribe to Sling Orange & Sports Extra for $27.50 in your first month. Local regional blackout restrictions apply.
SIGN UP FOR SLING: English | Spanish

Date Game Time (ET) TV channel
May 2 Lakers 117, Warriors 112 10 p.m. TNT
May 4 Warriors 127, Lakers 100 9 p.m. ESPN
May 6 Lakers 127, Warriors 97 8:30 p.m. ABC
May 8 Lakers 104, Warriors 101 10 p.m. TNT
May 10 Warriors 121, Lakers 106 10 p.m. TNT
May 12 Game 6 TBD ESPN
May 14 Game 7* TBD ABC

A killer whale gives a raspberry and says ‘hello’

Ready for sketch comedy she’s not. But a 14-year-old killer whale named Wikie has shown promise in mimicking strange sounds, such as a human “hello” — plus some rude noises.

Scientists recorded Wikie at her home in Marineland Aquarium in Antibes, France, imitating another killer whale’s loud “raspberry” sounds, as well as a trumpeting elephant and humans saying such words as “one, two, three.”

The orca’s efforts were overall “recognizable” as attempted copies, comparative psychologist José Zamorano Abramson of Complutense University of Madrid and colleagues report January 31 in Proceedings of the Royal Society B. Just how close Wikie’s imitations come to the originals depends on whether you’re emphasizing the rhythm or other aspects of sound, Abramson says.

Six people judged Wikie’s mimicry ability, and a computer program also rated her skills. She did better at some sounds, like blowing raspberries and saying “hello-hello,” than others, including saying “bye-bye.”
Imitating human speech is especially challenging for killer whales. Instead of vocalizing by passing air through their throats, they sound off by forcing air through passageways in the upper parts of their heads. It’s “like speaking with the nose,” Abramson says.

The research supports the idea that imitation plays a role in how killer whales develop their elaborate dialects of bleating pulses. Cetaceans are rare among mammals in that, like humans, they learn how to make the sounds their species uses to communicate.

Gravity doesn’t leak into large, hidden dimensions

When it comes to the dimensions of spacetime, what you see may be what you get.

Using observations from the collision of two neutron stars that made headlines in 2017 (SN: 11/11/17, p. 6), scientists found no evidence of gravity leaking into hidden dimensions. The number of observed large spatial dimensions — kilometer-scale or bigger — is still limited to the three we know and love, the researchers report January 24 at arXiv.org.

Just as insects floating on a pond may be unaware of what’s above or below the water’s surface, our 3-D world might be part of a higher-dimensional universe that we can’t directly observe. However, says astrophysicist David Spergel of Princeton University, a coauthor of the new study, “gravity might be able to explore those other dimensions.”
Such extra dimensions might explain some conundrums in physics, such as the existence of dark matter (an as-yet-unidentified source of mass in the universe) and dark energy (which causes the universe’s expansion rate to accelerate), says coauthor Daniel Holz, an astrophysicist at the University of Chicago. “That’s why people get excited about these modifications.”

To look for any hint of leaking gravity, scientists turned to the light and gravitational waves emitted in the neutron star smashup detected on August 17, 2017. The light allowed scientists to find the galaxy where the neutron stars merged. Spergel, Holz and colleagues showed that, given the galaxy’s distance from Earth, the strength of the gravitational waves was as expected. Extra dimensions weren’t stealing, and thus weakening, the observed ripples.

A variety of theories predict extra dimensions of spacetime into which gravity could leak, but the new result applies only to large extra dimensions, Spergel says. That’s because the gravitational waves detected from the neutron star collision have wavelengths of thousands of kilometers. Tiny extra dimensions, smaller than a fraction of a millimeter across, have also been proposed, but they wouldn’t affect such extended ripples.
One theory, proposed in 2000 by a group of theoretical physicists including Georgi Dvali, predicts a type of large extra dimension. The effects of gravity leaking into such dimensions would be visible only over long distances — explaining why gravity on smaller scales, such as the size of the solar system, behaves as if there are three spatial dimensions.

Because the gravitational waves don’t seem to weaken on their trek to Earth, they must travel more than about 65 million light-years before leaking into any potential additional dimension, the researchers concluded in the new study.

But other theories of extra dimensions are unaffected by the result. String theory, which posits that particles are made up of infinitesimal vibrating strings, predicts tiny extra dimensions that are curled up on themselves. “We’re not in any way ruling out string theory,” Spergel says. Another variety of extra spacetime dimension, of potentially infinite size, was proposed by physicists Lisa Randall and Raman Sundrum in 1999 (SN: 9/26/09, p. 22). But such theories also would not be ruled out, because gravity can’t penetrate very far into that type of extra dimension.

Neutron star mergers are “a completely new laboratory of testing gravity,” says Dvali, of Ludwig-Maximilians-Universität in Munich, who was not involved with the research. “This is absolutely fascinating and fantastic.” But, Dvali notes, the type of extra dimension he proposed back in 2000 already seems unlikely on these scales. “I would say there is already an extremely strong constraint on leakage coming from cosmology.” No matter how far we peer out into space, the universe seems to follow the normal laws of gravity in three dimensions.

For now, the dimensions of space remain as simple as 1, 2, 3.

A single atom can gauge teensy electromagnetic forces

Zeptonewton
ZEP-toe-new-ton n.
A unit of force equal to one billionth of a trillionth of a newton.

An itty-bitty object can be used to suss out teeny-weeny forces.

Scientists used an atom of the element ytterbium to sense an electromagnetic force smaller than 100 zeptonewtons, researchers report online March 23 in Science Advances. That’s less than 0.0000000000000000001 newtons — with, count ‘em, 18 zeroes after the decimal. At about the same strength as the gravitational pull between a person in Dallas and another in Washington, D.C., that’s downright feeble.
After removing one of the atom’s electrons, researchers trapped the atom using electric fields and cooled it to less than a thousandth of a degree above absolute zero (–273.15° Celsius) by hitting it with laser light. That light, counterintuitively, can cause an atom to chill out. The laser also makes the atom glow, and scientists focused that light into an image with a miniature Fresnel lens, a segmented lens like those used to focus lighthouse beams.

Monitoring the motion of the atom’s image allowed the researchers to study how the atom responded to electric fields, and to measure the minuscule force caused by particles of light scattering off the atom, a measly 95 zeptonewtons.

Why cracking your knuckles can be so noisy

“Pop” goes the knuckle — but why?

Scientists disagree over why cracking your knuckles makes noise. Now, a new mathematical explanation suggests the sound results from the partial collapse of tiny gas bubbles in the joints’ fluid.

Most explanations of knuckle noise involve bubbles, which form under the low pressures induced by finger manipulations that separate the joint. While some studies pinpoint a bubble’s implosion as the sound’s source, a paper in 2015 showed that the bubbles don’t fully implode. Instead, they persist in the joints up to 20 minutes after cracking, suggesting it’s not the bubble’s collapse that creates noise, but its formation (SN: 5/16/15, p. 16).
But it wasn’t clear how a bubble’s debut could make sounds that are audible across a room. So two engineers from Stanford University and École Polytechnique in Palaiseau, France, took another crack at solving the mystery.

The sound may come from bubbles that collapse only partway, the two researchers report March 29 in Scientific Reports. A mathematical simulation of a partial bubble collapse explained both the dominant frequency of the sound and its volume. That finding would also explain why bubbles have been observed sticking around in the fluid.

Comb jellies have a bizarre nervous system unlike any other animal

Shimmering, gelatinous comb jellies wouldn’t appear to have much to hide. But their mostly see-through bodies cloak a nervous system unlike that of any other known animal, researchers report in the April 21 Science.

In the nervous systems of everything from anemones to aardvarks, electrical impulses pass between nerve cells, allowing for signals to move from one cell to the next. But the ctenophores’ cobweb of neurons, called a nerve net, is missing these distinct connection spots, or synapses. Instead, the nerve net is fused together, with long, stringy neurons sharing a cell membrane, a new 3-D map of its structure shows.
While the nerve net has been described before, no one had generated a high-resolution, detailed picture of it.

It’s possible the bizarre tissue represents a second, independent evolutionary origin of a nervous system, say Pawel Burkhardt, a comparative neurobiologist at the University of Bergen in Norway, and colleagues.

Superficially similar to jellyfish, ctenophores are often called comb jellies because they swim using rows of beating, hairlike combs. The enigmatic phylum is considered one of the earliest to branch off the animal tree of life. So ctenophores’ possession of a simple nervous system has been of particular interest to scientists interested in how such systems evolved.

Previous genetics research had hinted at the strangeness of the ctenophore nervous system. For instance, a 2018 study couldn’t find a cell type in ctenophores with a genetic signature that corresponded to recognizable neurons, Burkhardt says.

Burkhardt, along with neurobiologist Maike Kittelmann of Oxford Brookes University in England and colleagues, examined young sea walnuts (Mnemiopsis leidyi) using electron microscopes, compiling many images to reconstruct the entire net structure. Their 3-D map of a 1-day-old sea walnut revealed the funky synapse-free fusion between the five sprawling neurons that made up the tiny ctenophore’s net.
The conventional view is that neurons and the rest of the nervous system evolved once in animal evolutionary history. But given this “unique architecture” and ctenophores’ ancient position in the animal kingdom, it raises the possibility that nerve cells actually evolved twice, Burkhardt says. “I think that’s exciting.”

But he adds that further work — especially on the development of these neurons — is needed to help verify their evolutionary origin.

The origins of the animal nervous system is a murky area of research. Sponges — the traditional competitors for the title of most ancient animal — don’t have a nervous system, or muscles or fundamental vision proteins called opsins, for that matter. But there’s been mounting evidence to suggest that ctenophores are actually the most ancient animal group, older even than sponges (SN: 12/12/13).

If ctenophores arose first, it “implies that either sponges have lost a massive number of features, or that the ctenophores effectively evolved them all independently,” says Graham Budd, a paleobiologist at Uppsala University in Sweden who was not involved in the research.

If sponges emerged first, it’s still possible that ctenophores evolved their nerve net independently rather than inheriting it from a neuron-bearing ancestor, Burkhardt says. Ctenophores have other neurons outside the nerve net, such as mesogleal neurons embedded in a ctenophore’s gelatinous body layer and sensory cells, the latter of which may communicate with the nerve net to adjust the beating of the combs. So, it’s possible they’re a mosaic of two nervous systems of differing evolutionary origins.

But Joseph Ryan, a bioinformatician at the University of Florida in Gainesville, doesn’t think the results necessarily point to the parallel evolution of a nervous system. Given how long ctenophores have been around — especially if they are older than sponges — the ancestral nervous system may have had plenty of time to evolve into something weird and highly-specialized, says Ryan, who was not part of the study. “We’re dealing with close to a billion years of evolution. We’re going to expect strange things to happen.”

The findings are “one more bit of the jigsaw puzzle,” Budd says. “There’s a whole bunch we don’t know about these rather common and rather well-known animals.”

For instance, it’s unclear how the nerve net works. Our neurons use rapid changes in voltage across their cell membranes to send signals, but the nerve net might work quite differently, Burkhardt says.

There are reports of potentially similar systems in other animals, such as by-the-wind-sailor jellies (Velella velella). Studying them in detail, along with nerve nets in other ctenophore species, could determine just how unusual this synapse-less nervous system is.

Northern elephant seals sleep just two hours a day at sea

Northern elephant seals are the true masters of the power nap.

On long trips out to sea, the seals snooze less than 20 minutes at a time, researchers report in the April 21 Science. The animals average just two hours of shut-eye per day while swimming offshore for months — rivaling African elephants for the least sleep measured among mammals (SN: 3/1/17).

“It’s important to map these extremes of [sleep behavior] across the animal kingdom to get a better sense of the evolution and the function of sleep for all mammals, including humans,” says Jessica Kendall-Bar, an ecophysiologist at the University of California, San Diego. Knowing how seals catch their z’s could also guide conservation efforts to protect places where they sleep.
Northern elephant seals (Mirounga angustirostris) spend most of the year out in the Pacific Ocean. On these odysseys, the animals forage around the clock for fish, squid and other food to sustain their enormous bodies, which can be as hefty as a car (SN: 2/4/22). Because northern elephant seals are most vulnerable to sharks and killer whales at the surface, they come up for air only a couple minutes at a time between 10- to 30-minute deep dives (SN: 9/28/02).

“People had known that these seals dive almost all the time when they’re out in the ocean, but it wasn’t known if and how they sleep,” says Niels Rattenborg, a neurobiologist at the Max Planck Institute for Biological Intelligence in Seewiesen, Germany, who was not involved in the study.

To find out if the seals sleep while diving, Kendall-Bar and her colleagues developed a watertight EEG cap for the animals. Using the cap and other sensors, the team tracked the brain waves, heart rates and 3-D motion of 13 young female seals, including five at a lab and six hanging out at coastal Año Nuevo State Park north of Santa Cruz, Calif. EEG data recorded while seals were slumbering revealed what the animals’ naptime brain waves looked like.

Kendall-Bar’s team also took two sensor-strapped seals from Año Nuevo and released them at another beach about 60 kilometers south. To swim home, the seals had to cross the deep Monterey Canyon — a locale similar to the deep, predator-fraught waters frequented by seals on months-long foraging trips. Matching the seals’ EEG readings to their diving motions on this journey showed how northern elephant seals sleep on long voyages.

The animals first swim 60 to 100 meters below the surface, then relax into a glide, Kendall-Bar says. As they nod off into slow-wave sleep, the animals keep holding themselves upright for several minutes. But as REM sleep sets in, so does sleep paralysis. The animals flip upside-down and drift in gentle spirals toward the seafloor. Seals can descend hundreds of meters deep during these naps — far below where their predators normally prowl. When the seals wake after five to 10 minutes of sleep, they swim up to the surface. The whole routine takes about 20 minutes.

Looking for that distinct sleep dive motion, the researchers could pick out naps in the dive records of 334 adult seals that had been outfitted with tracking tags from 2004 to 2019. Those sleep patterns revealed that northern elephant seals conk out, on average, around two hours per day while on months-long foraging missions. But the seals sleep nearly 11 hours per day while on land to mate and molt, where they can indulge in long, beachside siestas without worrying about predators.
“What the seals are doing might be something like what we do when we sleep in on the weekend, but it’s on a much longer timescale,” Rattenborg says. He and his colleagues have found a similar feast-and-famine style of sleep in great frigate birds, which fly over the ocean (SN: 6/30/16). “Although they can sleep while they’re flying,” he says, “they sleep less than an hour a day for up to a week at a time, and once back on land, they sleep over 12 hours a day.”

Curiously, northern elephant seals’ sleep habits are quite different from how other marine mammals have been seen sleeping in labs. “Many of them … sleep in just half of their brain at a time,” Kendall-Bar says. That half-awake state allows dolphins, fur seals and sea lions to practice constant vigilance, literally sleeping with one eye open.

“I think it’s pretty cool that elephant seals are doing this without [one-sided] sleep,” Kendall-Bar says. “They’re shutting off both halves of their brain completely and leaving themselves vulnerable.” It seems the key to enjoying such deep sleep is sleeping deep in the sea.

Cosmic antimatter hints at origins of huge bubbles in our galaxy’s center

MINNEAPOLIS — Bubbles of radiation billowing from the galactic center may have started as a stream of electrons and their antimatter counterparts, positrons, new observations suggest. An excess of positrons zipping past Earth suggests that the bubbles are the result of a burp from our galaxy’s supermassive black hole after a meal millions of years ago.

For over a decade, scientists have known about bubbles of gas, or Fermi bubbles, extending above and below the Milky Way’s center (SN: 11/9/10). Other observations have since spotted the bubbles in microwave radiation and X-rays (SN: 12/9/20). But astronomers still aren’t quite sure how they formed.
A jet of high-energy electrons and positrons, emitted by the supermassive black hole in one big burst, could explain the bubbles’ multi-wavelength light, physicist Ilias Cholis reported April 18 at the American Physical Society meeting.

In the initial burst, most of the particles would have been launched along jets aimed perpendicular to the galaxy’s disk. As the particles interacted with other galactic matter, they would lose energy and cause the emission of different wavelengths of light.

Those jets would have been aimed away from Earth, so those particles can never be detected. But some of the particles could have escaped along the galactic disk, perpendicular to the bubbles, and end up passing Earth. “It could be that just now, some of those positrons are hitting us,” says Cholis, of Oakland University in Rochester, Mich.

So Cholis and Iason Krommydas of Rice University in Houston analyzed positrons detected by the Alpha Magnetic Spectrometer on the International Space Station. The pair found an excess of positrons whose present-day energies could correspond to a burst of activity from the galactic center between 3 million and 10 million years ago, right around when the Fermi bubbles are thought to have formed, Cholis said at the meeting.

The result, Cholis said, supports the idea that the Fermi bubbles came from a time when the galaxy’s central black hole was busier than it is today.

Urchins are dying off across the Caribbean. Scientists now know why

Since early 2022, sea urchins have been mysteriously dying off across the Caribbean. Now scientists say they have identified the main culprit: a type of relatively large, single-celled marine microorganism called a scuticociliate.

The discovery is a little surprising given that “ciliates are not normally seen as agents of mass mortality,” says Ian Hewson, a marine microbial ecologist at Cornell University. But the evidence, described April 19 in Science Advances, all points to the organism, Philaster apodigitiformis, infecting the urchins, he says. “In all of my years of investigating marine diseases, this is the one which we are 100 percent confident about.”
Scuticociliates are found across the world’s oceans. Given their ubiquity, it’s unknown what conditions may have allowed P. apodigitiformis to become so detrimental to the urchins. It’s also unclear how it causes infection.

While there are no available treatments for the disease, knowing the pathogen’s identity allows for the development of possible options.
Long-spined sea urchins (Diadema antillarum) play a crucial role in Caribbean coral reefs, grazing algae that would otherwise smother corals (SN: 9/27/22). In the 1980s, the urchins nearly disappeared during a massive die-off, the cause of which remains unknown (SN: 6/16/84).

Decades of restoration efforts had made some progress when an alarmingly similar mortality event began to spread in January 2022, wiping out thousands of urchins. This time, scientists across the United States and the Caribbean sprang into action.

Three teams independently reached the same conclusion about P. apodigitiformis, using different approaches. Hewson’s team compared the entire set of active genes, or the transcriptome, of healthy and sick urchins from 23 sites across the Caribbean. The researchers noticed that some of the active genes in the sick urchins’ transcriptomes weren’t from the urchins but from the microorganism. Meanwhile, teams in Florida and Hawaii observed the scuticociliates in the tissues and fluids of sick urchins, reinforcing the genetic finding.

Upon a closer look, the scuticociliates tended to cluster in the sick urchins’ body walls and at the base of their spines. The microorganisms were absent from healthy urchins.
The next step was to isolate the pathogen and infect healthy urchins. Four days after infection, six of 10 infected urchins lost many spines — a common symptom of sick urchins. None of the uninfected urchins lost spines.

“It was really exciting to see,” says Michael Sweet, a marine disease ecologist at the University of Derby in England, who wasn’t involved in the study. “Scary, but also exciting to see the [ciliate’s] name mentioned in a different context because Philaster has never been related to urchin diseases before.” His research points to the involvement of the genus in several coral diseases.

While the scuticociliate clearly plays a pivotal role, Sweet says, there are almost certainly other factors at play, such as other microorganisms or environmental stressors, that could help explain what triggered the start of the recent die-off.

For now, it’s unknown if the same pathogen was involved in the 1980s die-off. Hewson’s team hopes to answer that question by looking at museum specimens from the period.

The classic map of how the human brain manages movement gets an update

The classical view of how the human brain controls voluntary movement might not tell the whole story.

That map of the primary motor cortex — the motor homunculus — shows how this brain region is divided into sections assigned to each body part that can be controlled voluntarily (SN: 6/16/15). It puts your toes next to your ankle, and your neck next to your thumb. The space each part takes up on the cortex is also proportional to how much control one has over that part. Each finger, for example, takes up more space than a whole thigh.
A new map reveals that in addition to having regions devoted to specific body parts, three newfound areas control integrative, whole-body actions. And representations of where specific body parts fall on this map are organized differently than previously thought, researchers report April 19 in Nature.

Research in monkeys had hinted at this. “There is a whole cohort of people who have known for 50 years that the homunculus isn’t quite right,” says Evan Gordon, a neuroscientist at Washington University School of Medicine in St. Louis. But ever since pioneering brain-mapping work by neurosurgeon Wilder Penfield starting in the 1930s, the homunculus has reigned supreme in neuroscience.

Gordon and his colleagues study synchronized activity and communication between different brain regions. They noticed some spots in the primary motor cortex were linked to unexpected areas involved in action control and pain perception. Because that didn’t fit with the homunculus map, they wrote it off as a result of imperfect data. “But we kept seeing it, and it kept bugging us,” Gordon says.

So the team gathered functional MRI data on volunteers as they performed various tasks.

Two participants completed simple movements like moving just their eyebrows or toes, as well as complex tasks like simultaneously rotating their wrist and moving their foot from side to side.

The fMRI data revealed which parts of the brain activated at the same time as each task was done, allowing the researchers to trace which regions were functionally connected to one another. Seven more participants were recorded while not doing any particular task in order to look at how brain areas communicate during rest.

Testing only a few participants, each for many hours, offers unique insights into neural connectivity, Gordon says. “When we collect this much data in individuals, we constantly start seeing things that people have never really noticed before.”
The team discovered that while the brain-body part connections vaguely follow the pattern discovered by Penfield, the primary motor cortex is organized into three distinct sections. Each represents different body regions: lower body, torso and arms, and head.

Within each of these sections, the outermost body part of that region is mapped to the center of that section. For example, the area of the primary motor cortex assigned to the lower body has the toes in the middle with other leg parts radiating out in each direction from it. As a result, the entire section is organized like this: hip, knee, ankle, toes, ankle, knee, hip.
The team also unexpectedly found three mysterious spots not linked to a specific body part. Dubbed intereffector regions, they connect to an external network involved in action control and the sensing of pain. These regions alternate with the sections devoted to specific body parts. The team suspects that intereffector regions may integrate action goals and body movements involving multiple body parts, while the spaces in between are used for precise movements of isolated body parts.

Using previous data from three large fMRI studies, which include data from around 50,000 people, the team verified that this organization was consistent across a wide swath of people. Similar patterns also appeared in existing datasets from macaque monkeys, children and clinical populations.

“I think it was just easy to miss anything that seemed anomalous — must be noise,” says Michael Graziano, a neuroscientist at Princeton University who was not involved in the research. But with access to these huge datasets, “you get these vast numbers of subjects, and the pattern is crystal clear, and you can’t ignore it …. This is really the best example I’ve seen in a long, long time of looking at humans and trying to figure out at a detailed level what is the organization.”

Gordon’s team now plans to see whether these intereffector regions play a role in certain kinds of pain. More broadly, the team hopes their findings will prompt more in-depth research of what specific areas of the brain do. With new techniques and equipment, there is much left to explore, Gordon says. “Brain mapping isn’t dead.”